1 An uncharged capacitor is connected into a circuit as shown.

(a) Describe what happens to the capacitor when the switch S is closed.	(2)

(b) A student models the behaviour of the circuit using a spreadsheet. The student uses a $100\,\mu\text{F}$ capacitor, a $3.00\,\text{k}\Omega$ resistor and $5.00\,\text{V}$ power supply. The switch is closed at time $t=0\,\text{s}$.

	A	В	С	D	Е
1	t / s	I/mA	ΔQ / μ C	Q / μ C	p.d. across capacitor/V
2	0	1.67	167	167	1.67
3	0.1	1.11	111	278	2.78
4	0.2	0.74	74	352	3.52
5	0.3	0.49	49	401	4.01
6	0.4	0.33	33	434	4.34
7	0.5	0.22	22	456	4.56
8	0.6	0.15	15	471	4.71
9	0.7	0.10	10	480	4.80
10	0.8	0.07	7	487	4.87

(i) Explain how the value in cell C4 is calculated.

(2)

(ii`	Explain ho	x the	value i	n cell	E3 is	calculated
١	Π,	, Explain no	w uic	value i		$\mathbf{L} \mathbf{J} \mathbf{J} \mathbf{R}$	s carcurated.

(2)

(c) The graph shows how the spreadsheet current varies with time.

(i)	Use the graph to show that the time constant is approximately consistent with the component values.		
	•	(4)	
(ii)	The student thinks that the graph is an exponential curve. How would you use another graph to confirm this?		
		(3)	

(Total for Question = 13 marks)

2 The graph shows how the output *V* from the terminals of a power supply labelled d.c. (direct current) varies with time *t*. This type of supply will not allow current to flow backwards through it.

(a) A student connects a capacitor across the terminals of this power supply in order to try to produce a constant voltage.

Suggest how this produces a constant voltage.

(2)

(b) The student then connects a resistor across the capacitor as shown.

The graph shows the variation of the potential difference V across the resistor with time t.

(i) Estimate the average potential difference across the resistor.

(1)

Average potential difference =

(ii) Calculate the average current in the resistor.

(2)

Average current =

(iii) Determine the time in each cycle for which the capacitor discharges through the resistor.

(1)

Discharge time =

capacitor and hence determine the capacitance of the capacitor.	(4)
	(4)
Charge =	
Capacitance =	
(c) The student wants to produce a potential difference across the same resistor that ha	S
(c) The student wants to produce a potential difference across the same resistor that hat less variation in magnitude.State, with a reason, what the student could do to achieve this.	
less variation in magnitude.	(2)
less variation in magnitude.	
less variation in magnitude.	(2)
less variation in magnitude. State, with a reason, what the student could do to achieve this.	(2)
less variation in magnitude. State, with a reason, what the student could do to achieve this.	(2)
less variation in magnitude. State, with a reason, what the student could do to achieve this.	(2)

- 3 A particular experiment requires a very large current to be provided for a short time.
 - (a) An average current of 2.0×10^3 A is to be supplied to a coil of wire for a time of 1.4×10^{-3} s. The resistance of the coil is 0.50Ω .
 - (i) Show that the charge that flows through the coil during this time is about 3 C.

(2)

(ii) The circuit shows how a capacitor could be charged and then discharged through the coil to provide the current.

The circuit contains a capacitor of capacitance 600 μF . This capacitor is suitable to provide the current for 1.4×10^{-3} s.

Explain why the capacitor is suitable.

(3)

(b)	It can be assumed that the 600 µF capac	entor completely discharges in 1.4×10^{-3} s.	
	(i) Calculate the potential difference of	the power supply.	(2
	(ii) Calculate the average power deliver	Potential difference =	
	(ii) Carcarate the average power deriver	ed to the con in this time.	(3)
		Average power =	
		(Total for Question = 10 marks	;)